Cayley graphs and automatic sequences
نویسندگان
چکیده
منابع مشابه
Cayley graphs and automatic sequences
We study those automatic sequences which are produced by an automaton whose underlying graph is the Cayley graph of a finite group. For 2-automatic sequences, we find a characterization in terms of what we call homogeneity, and among homogeneous sequences, we single out those enjoying what we call self-similarity. It turns out that self-similar 2-automatic sequences (viewed up to a permutation ...
متن کاملCayley graphs - Cayley nets
It is, however, not clear how to choose the generators to produce special graphs. We know many topologies and their generators, but many more may be constructed in the future, having better properties (in terms of diameter, nodal degree and connectivity) than for instance the hypercube. I will present several graphs which connect rings using the generator g 1 and some additional generators.
متن کاملErdős-Rényi Sequences and Deterministic Construction of Expanding Cayley Graphs
Given a finite group G by its multiplication table as input, we give a deterministic polynomial-time construction of a directed Cayley graph on G with O(log |G|) generators, which has a rapid mixing property and a constant spectral expansion. We prove a similar result in the undirected case, and give a new deterministic polynomialtime construction of an expanding Cayley graph with O(log |G|) ge...
متن کاملVector Space semi-Cayley Graphs
The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2016
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-016-0706-6